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Abstract 

A new Condensed History algorithm is introduced to enhance the Monte Carlo simulation of 
electron transport problems. Unlike established multiple scattering algorithms, this method 
is a true transport process - it simulates a transport equation that approximates the exact 
Boltzmann equation. The new equation has a larger mean free path than, and preserves two 
angular moments of, the Boltzmann equation. Thus, the new equation conserves both parti- 
cles and scattering power, and it is more efficient to model by Monte Carlo. We show that 
this “Transport Condensed History” algorithm more accurately predicts electron position as a 
function of path length traveled (energy lost) than current Condensed History schemes. We 
also show that it can move particles across material boundaries and interfaces with acceptable 
accuracy and efficiency. 

1 Introduction 

Most analog simulations of electron transport problems require exhaustive amounts of time to 
provide reasonable results. This is because electrons can undergo up to lo5 collisions during 
their lifetime, and analog methods must simulate each of these collisions faithfully according 
to the true physics. 

Condensed History algorithms are approximate Monte Carlo methods designed to remedy this 
problem. They make use of the fact that most collisions between electrons and atoms occur 
very close together and result in very small changes in direction and energy loss. Instead of 
modeling every interaction, Condensed History algorithms account for the cumulative effect of 
multiple collisions in a single “step” of (user-specified) path length s. Because computational 
cost is proportional to the total number of steps, the largest step size possible within the con- 
straint of acceptable accuracy is desired. 

The first multiple scattering algorithms were developed by Martin Berger (Berger, 1963). In 
this paper, Berger devised two methods that are based on the strategy of artificially decoupling 



the streaming, angular scattering, and energy loss processes of the transport equation. In each 
Condensed History (CH) step, these processes are executed separately. The CH streaming 
process determines the Monte Carlo electron’s new position, the CH angular scattering process 
finds the new direction of flight, and the CH energy loss or slowing down process determines the 
new energy. Berger’s first method irnplements the processes in the order stated over the entire 
step s. Recognizing that this forces the electron’s new position to lie along the original direction 
of flight such that no transverse displacement occurs,.IBerger formulated a second algorithm. 
There, the streaming process is split into two sub-steps, each with length s/2. Larsen has 
shown that if the slowing down process is also split into sub-steps, Berger’s second method has 
a higher order of accuracy than his first (Larsen, 1992). Recently, Baro et al. have developed 
the PENELOPE algorithm, which is identical to Berger’s second method except that the first 
sub-step has length Is while the second has length (1 - <) s, where < is a uniformly distributed 
random number from 0 < [ < 1 (Baro, 1995). 

Comparisons with physical experiments have shown that these traditional CH algorithms yield 
accurate results for many problems. Nevertheless, for some situations, the weaknesses of these 
methods appear. One such situation occurs when electrons have slowed down to energies in 
the keV range, especially in high atomic number materials. Here, the angular scattering is only 
moderately anisotropic. Generally, when the electron’s initial and final directions in a step are 
not nearly identical, the CH streaming process does not accurately determine the electron’s 
position. 

Another weakness of established CH methods is that their theoretical basis requires an infi- 
nite, homogeneous medium. These methods have difficulty simulating practical problems that 
contain complicated geometries and/or many material regions. Substantial errors often arise 
when trying to move particles across the boundaries or interfaces between regions. Bielajew 
has created the PRESTA algorithm to handle this difficulty (Bielajew, 1996). This algorithm 
automatically shrinks the step size as the electron history approaches a boundary. When the 
particle actually reaches a boundary, the step size has been reduced to the point where single 
scatter Monte Carlo is used to move it across. PRESTA provides accurate results, but it is 
often time-consuming. Thus, simulations can be quite inefficient for problems involving many 
interfaces. 

In this paper, we describe a new CH algorithm that copes with these difficulties. Unlike 
conventional Condensed History, the new method is a direct Monte Carlo simulation of a 
transport process. This process is described by a transport equation that approximates the 
true Boltzmann equation with a larger mean free path and a more isotropic scattering operator. 
Previously, we have developed an algorithm in which the user specifies the mean free path, but 
this method does not limit to the true Boltzmann solution as this path length shrinks to 
I/& (Tolar, 1999). The mean free path, however, of our new “Transport Condensed History” 
(TCH) scheme is 

1 
XT&y = - + s ) 

Et 

where s is a parameter representing the “excess mean free path”. The user is free to specify 
this parameter; as s + 0, the exact Boltzmann transport process is recovered. In addition, the 
zero-th and first order angular moments of the modified scattering operator are identical to the 
true scattering operator. For an infinite medium, H.W. Lewis has shown that if the n-th order 



angular moments of two scattering kernels agree, then the n-th order space-angle moments of 
the solutions of the two transport equations that contain these kernels will also agree (Lewis, 
1950). Therefore, TCH predicts the mean position of particles that have traveled a given path 
length exactly, regardless of their energy or how anisotropically they scatter. 

Because it is a transport process, the TCH algorithm is implemented just like an analog Monte 
Carlo; no additional logic or special treatment is necessary to move particles across boundaries 
and interfaces. The TCH method can model heterogeneous, finite medium problems effectively 
and efficiently because of its large mean free path. In the next section we derive the TCH 
scheme, describe its features, and explain how it is implemented in a Monte Carlo code. Then, 
we present numerical results from several test problems to validate our analysis. We conclude 
with a brief discussion. 

2 Transport Condensed History Theory 

To simplify the analysis, we consider the one-group transport equation with no absorption 
(Et = ‘Lo): 

Performing Legendre polynomial P, (2 e Q’) ex rp ansions for the angular flux and the differential 
scattering cross section, we obtain 

and 

where 

c 
c,=-=, 

c SO 

and 

po=&Q’ . 
Thus, we can write Eq. 1 as 

&V$(T,Q) + &bw(T,2) = 0 . 
In this equation, C,oC is the outscattering-minus-inscattering operator: 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

where 



X z $-- = mean free path . 
SO 

2.1 The Excess Mean Free Path 

(8) 

Let s be a positive constant called the “excess mean free path,” and let the constants a,(s) 
satisfy v 

1 - c, l - an(s> 
-- 

x At-s ’ 
7x20. 

Solving for a,(s), we obtain 

an(S) = 1 - (1 - C,) 1 + t ( 1 
. 

Using Eqs. 7 and 9, we can write 

1 
= x+s $Q-2) - / fs (2.2’) $ (r,2’) a’ , 

4n 1 
where 

fs(P.0) f fJ (y) un(s) pn(PO) . 
n=O 

Eqs. 11 and 6 now give 

(11) 

(12) 

Eq. 13 is algebraically equivalent to the original transport equation defined in Eq. 1. The formal 
mean free path of Eq. 13 is (X + s), which is greater than the original mean free path by an 
amount s. Unfortunately, the function is is not positive, and it contains a delta function. 
As it stands, Eq. 13 does not describe a transport process with mean free path (X + s). 

2.2 The Transport Condensed History Approximation 

The essence of the Transport Condensed History approximation is to replace the non-positive 
singular function is by a “nicer” function 

ad = 2 ($p) b,(s) P,(/Lo) ) 
n=O 

which has the following properties: 

1. Of, is a bounded, positive function of po. Then Eq. 13, with fs(po) replaced with 
Fs(po), will be a true transport process. 



2. lim,,ob,(s) = c,. Thus, the approximate transport process reduces to the Boltzmann 
process as the excess mean free path shrinks to zero. 

3. I&(S) - u,(s)/ = O(sN), where N is large. This will help minimize the error. 

4. b&) = %(S> , 0 5 n 5 M, where M is large. This condition will preserve n/r + 1 
angular moments of the original scattering process. 

‘T 

We have devised a scheme in which N = 1 and M = 1. To begin, we rewrite Eq. 10 as 

(15) 
Now, we define the functions b,(s) by: 

bn(s) f c, exp [-(I - Cn)$] 7 

where si is defined in terms of s by 

l- (iL$L) z = exp [-(l- cl):] . 

(16) 

Recognizing that cl = p = mean scattering cosine for the exact transport process, we can solve 
Eq. 17 for s in terms of sr: 

S = s{l-exp[-(l-p):]} 

XII (A,, - A) [I - exp (-?)I . 
tr 

Here Xt, is the transport mean free path of the original transport equation: 

x ,&. zz __ III 
1 

1 - j!Z cso (1 - jZ> . 

(18) 

Eq. 18 imposes the following constraint: 

x + s < At, . PO> 
Physically, &, is the mean penetration depth of particles that have traveled infinite path length. 
Therefore, Eq. 20 only requires that the mean free path of the TCH scheme be less than this 
maximum mean distance of flight. This constraint does not forbid reasonable choices for s. In 
practice, we choose si to be any suitable positive length, and then use Eq. 18 to determine the 
excess mean free path s. 

Eqs. 15-17 reveal that 
b,(s) = u,(s) n = 0,l . 

Also, for s M 0, we can solve Eq. 17 to see that s1 M s/p = O(s). From Eq. 16, 

b,(S) = Cn [l + O(S)] . 



Hence, I&(S) - u,(s)\ = 0(s), and lim,,ob,(s) = c,, as desired. 

Figure 1 compares the constants a,(s) and b,(s) for 50 keV electrons in aluminum. The path 
length sr is about 25 mean free paths and corresponds to an energy loss of 1.25 keV. As indi- 
cated, u,(s) and b,(s) agree for n = ,O and n = 1, and they remain close together for small n. 
Then, they begin to depart from one another; for large n, b,(s) -+ 0 and u,(s) -+ -s/X ==: -25. 

-0.8 1 I 
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Figure 1: a,(s) and b,(s) V s. n for 50 keV Electrons in Aluminum 

2.3 The New Scattering Kernel 

The remaining task is to examine the positivity of the scattering kernel F,&) in the TCH 
equation. Using Eq. 14 and 16, this function is given by 

F,(b) = n$o (F) cn exp [-(1 - en)?] p,&) , (21) 
We observe that F,(,Q,) is the convolution of two different scattering kernels. The first, 

.CY(PO) = &c5(PO) = 2 (y) CnPn(PO) 7 
n=O 

(22) 

describes single-collision scattering. Physically, g(po) is the probability distribution function 
for an electron’s direction of flight after undergoing one scattering event. This function appears 
in the Boltzmann equation and is positive for -1 < I_L~ < 1. The second function, 

Gsbo) = E (y) exp [-(I - en)?] Pn(po) , 
n=O 

(23) 
describes multiple scattering. Physically, it is the probability distribution function for an elec- 
tron’s direction of flight after traveling a path length sl. This function is called the Goudsmit- 
Saunderson distribution (Goudsmit, 1940), and is positive. Since F,(,uo) is the convolution 



q&R’) = j- g(&R”)G,(R”~L)d~” 
47r 

(24) 
of the two positive functions g and G,, it must itself be positive. 

2.4 Implementation 

The Transport Condensed History algorithm is simu&ted just like a standard analog Monte 
Carlo code. To begin, the user specifies the path length s r, and the excess mean free path s is 
calculated from Eq. 18. Next, the distance to “collision” (in mean free paths) is sampled from 
an exponential distribution with mean value 1 + s/X. The particle travels this entire distance 
in its initial direction whether it crosses a boundary or not. After the electron has reached its 
new position, the new direction of flight is sampled from F,(,!Jo). This is done by sampling a 
direction from g(po) given by Eq. 22 and then, without moving the particle, sampling another 
direction G,(,u~) given by Eq. 23. Thus, the new direction of flight is the cumulative effect 
from a single and a multiple scattering event. Lastly, the electron’s energy after the collision 
is determined by the Continuous Slowing Down approximation. That is, energy loss is directly 
proportional to path length traveled and is obtained using the electron’s stopping power. This 
process is repeated until the electron history is terminated. 

3 Numerical Results 

3.1 Aluminum Problem 

To test the Transport Condensed History (TCH) algorithm, we consider a pencil beam of 150 
keV electrons initially traveling in the z-direction in an infinite medium of aluminum. The Con- 
tinuous Slowing Down approximation is employed with multigroup cross sections and stopping 
powers obtained from the EPICSHOW code (Cullen, 1997). We do not consider discrete energy 
loss events or any secondary particle production. Elastic scattering events are modeled by the 
Screened Rutherford kernel (Bielajew, 1998). As the electrons slow down to various energies, 
we calculate the mean position and the standard deviation about this mean. Three methods are 
used to obtain these quantities: (1) TCH, (2) PENELOPE (PEN), and (3) analog Monte Carlo. 

For TCH and PEN, s1 is selected as l/4 the path length required for an electron to lose the 
energy of one group. Each history is terminated after traveling through 35 groups to 1.0 keV. 
Analog Monte Carlo electrons typically undergo about 2800 collisions per history, while TCH 
and PEN particles undergo about 140 steps per history (4 per energy group). Thus, each step 
is on the average 20 mean free paths. 

The results are shown in Figure 2. We see excellent agreement between both Condensed History 
methods and analog Monte Carlo. For TCH, this is expected because the algorithm preserves 
two angular moments of the Boltzmann scattering operator. Thus, TCH determines the mean 
depth, (x), exactly for any infinite medium problem. Although TCH does not preserve second 
order moments, TCH calculates the standard deviation about the mean depth, sig-z = oZ, 
the mean radius, (T) = (dm), and the root mean squared radius, rms = a, = @Tq: 
within 2% of the analog values. The PEN results are also within 2% of the analog values be- 
cause the electrons in this energy range scatter fairly anisotropically in aluminum. (The mean 
cosines for single scattering events are approximately p = 0.998.) 
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Figure 2: (a) Mean Depth and Its Standard Deviation and (b) Mean and RMS Radius Vs. En- 
ergy for a  150 keV Electron Beam in Aluminum 

3.2 Go ld Problem 

Next we consider the same problem, except that the electrons travel in an infinite medium of 
gold. Here, the average step size is about 32 mean free paths for TCH and PEN. Because gold 
has a  much higher atomic number than aluminum, the electrons scatter more isotropically; the 
mean cosines for single scattering are roughly p  = 0.987. Table 1  compares (z), gZ , and or for 
a  few energies. For (z), we see excellent agreement between analog Monte Carlo and TCH, but 
now the PEN results are off by about 8%. Also, the TCH estimates for oZ and or are slightly 
closer than PEN to the analog values. 

3.3 Aluminum - Go ld Interface Problem 

The last problem contains a  planar interface at the depth z = 4.0 x  10v4cm. To the left of 
the interface, the electrons slow down in gold, and on the right, in aluminum. The 150 keV 
electron beam starts at z  = 0, traveling monodirectionally down the z-axis. For CH methods, 
the average step is around 29 mean free paths. For the PEN scheme, we do not implement 
the PRESTA algorithm to shrink or expand the step sizes near the interface. Although the 
procedure of moving electrons es/X and (1 - OS/X mean free paths between collisions is not 
rigorously correct across the interface, Bielajew suggests that it should be fairly accurate. 

Figure 3  clearly indicates the superiority of TCH for this problem. Generally, the TCH mea- 
surements are within 3% while the PEN results are only within about 10% of the analog results. 
Since this problem contains two regions of different materials, TCH cannot predict (x) exactly; 
moments can only be preserved in an infinite medium. Nevertheless, the errors in TCH associ- 
ated with moving electrons across the interface are apparently less than those errors in PEN. To 

. . 



Table 1: Mean Depth and Standard Deviations for a 150 keV Electron Beam in Gold 

Final Solution (Z) G or 
Energy (keV) Method (10m3cm) (10u3cm) (10e3cm) 

125.0 Analog 0.1960 0.2402 0.3640 
125.0 TCH 0.1962 0.2550 0.3538 
125.0 PEN 0.2106 0.2584 0.3788 * 
70.0 Analog 0.1995 0.4356 0.6306 
70.0 TCH 0.1997 0.4445 0.6243 
70.0 PEN 0.2146 0.4618 0.6620 
40.0 Analog 0.1995 0.4587 0.6625 
40.0 TCH 0.1997 0.4670 0.6565 
40.0 PEN 0.2146 0.4847 0.6941 
1.0 Analog 0.1995 0.4634 0.6690 
1.0 TCH 0.1998 0.4715 0.6632 
1.0 PEN 0.2146 0.4895 0.7006 

achieve greater accuracy for either scheme, the step sizes must be reduced. For the simulations 
we have described, TCH and PEN are equally efficient; both are about ten times faster than 
analog Monte Carlo. 

4 Conclusions 

In summary, we have developed a new Condensed History algorithm for electrons that is a 
transport process. The mean free path of this process is the sum of the mean free path given 
by the Boltzmann equation plus the excess mean free path s specified by the user. If s = 0, 
the TCH transport process reduces to the physical transport process. The TCH algorithm 
has been tested for pencil beams with continuous slowing down energy dependence. We have 
shown that the TCH algorithm predicts the locations of electrons of a given energy accurately. 
Also, we have shown that TCH is adequate for a problem involving a material interface without 
including the costly expense of shrinking the step sizes. 

Overall, the TCH method is designed to improve the accuracy/efficiency of current Condensed 
History methods. The TCH method may provide substantial contributions to electron transport 
problems in medical physics, especially for high accuracy applications such as radiotherapy and 
radiation dosimetry. In the future, we plan to test the TCH method under more practical 
situations that include complicated geometries with many material regions. We also hope 
to develop more advanced TCH models that have a higher order of accuracy and preserve 
additional angular moments of the Boltzmann equation. 

Acknowledgments 

This work was performed under the auspices of the U.S. Department of Energy by the Lawrence 
Livermore National Laboratory under contract W-7405-ENG-48. 



3.5 r , 

xxx x 
x 

3 .o.o . . -1. 
3- ': 

P.. " .k...., 6. x. +. 
-5. 

-.-.. .p 
-./ Y  : 

1-. 

TCH<r> 0 
PENa> + 

Analog <I) .._- 
TCHrms n . 
PENmx x 

Analog IN -.- . 

Figure 3: (a) Mean Depth and Its Standard Deviation and (b) Mean and RMS Radius Vs. En- 
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